A Level Set Method for Inverse Problems
نویسنده
چکیده
منابع مشابه
RBF-Chebychev direct method for solving variational problems
This paper establishes a direct method for solving variational problems via a set of Radial basis functions (RBFs) with Gauss-Chebyshev collocation centers. The method consist of reducing a variational problem into a mathematical programming problem. The authors use some optimization techniques to solve the reduced problem. Accuracy and stability of the multiquadric, Gaussian and inverse multiq...
متن کاملOn a Level-Set Method for Ill-Posed Problems with Piecewise Nonconstant Coefficients
We investigate a level-set-type method for solving ill-posed problems, with the assumption that the solutions are piecewise, but not necessarily constant functions with unknown level sets and unknown level values. In order to get stable approximate solutions of the inverse problem, we propose a Tikhonov-type regularization approach coupled with a level-set framework. We prove the existence of g...
متن کاملThe uniqueness theorem for inverse nodal problems with a chemical potential
In this paper, an inverse nodal problem for a second-order differential equation having a chemical potential on a finite interval is investigated. First, we estimate the nodal points and nodal lengths of differential operator. Then, we show that the potential can be uniquely determined by a dense set of nodes of the eigenfunctions.
متن کاملOn multiple level-set regularization methods for inverse problems
We analyze a multiple level-set method for solving inverse problems with piecewise constant solutions. This method corresponds to an iterated Tikhonov method for a particular Tikhonov functional Gα based on TV–H 1 penalization. We define generalized minimizers for our Tikhonov functional and establish an existence result. Moreover, we prove convergence and stability results of the proposed Tikh...
متن کاملA piecewise constant level set method for elliptic inverse problems
We apply a piecewise constant level set method to elliptic inverse problems. The discontinuity of the coefficients is represented implicitly by a piecewise constant level set function, which allows to use one level set function to represent multiple phases. The inverse problem is solved using a variational penalization method with the total variation regularization of the coefficients. An opera...
متن کاملA BINARY LEVEL SET METHOD FOR STRUCTURAL TOPOLOGY OPTIMIZATION
This paper proposes an effective algorithm based on the level set method (LSM) to solve shape and topology optimization problems. Since the conventional LSM has several limitations, a binary level set method (BLSM) is used instead. In the BLSM, the level set function can only take 1 and -1 values at convergence. Thus, it is related to phase-field methods. We don’t need to solve the Hamilton-Jac...
متن کامل